Rätsel: Durchschnittsgeschwindigkeiten

Update: Montag, 4. November

Home / RÄTSEL / Mathematische Rätsel

Die Runde einer Rennstrecke ist 1 km lang. Mit dem Auto soll Fritz in zwei Runden eine Durchschnittsgeschwindigkeit von 60 km/h erreichen.

In der ersten Runde hat er aber nur durchschnittlich 40 km/h geschafft.

Wie schnell muss Fritz in der zweiten Runde fahren, um noch auf insgesamt 60 km/h zu kommen?

 

 

 

Gefällt dir das Rätsel? Du möchtest deine Meinung dazu sagen? Oder hast du eine bessere Lösungsbeschreibung parat? Schreibe doch einen Kommentar...

Kommentare 25

Pie (2013-03-06)
Wie wäre es mit 80?
Rabenfeder (2013-06-18)
*Lösung*
Fritz hat für den ersten Kilometer bei 40 km/h genau 1/40 einer Stunde gebraucht.
Für die Gesamtstrecke von 2 Kilometer sollen 60 km/h rauskommen, also muss er die Strecke in 2/60 einer Stunde schaffen bzw 1/30 einer Stunde.

Die Zeit von Runde eins plus die von Runde zwei ist die Gesamtzeit:
1/40 + t = 1/30 (alles in Stunden)
stellt man das nach t um und löst:
t = 1/30 -1/40 = (40-30)/(30*40)=1/12
Also darf er für die zweite Runde nur 1/12 einer Stunde brauchen.
Bei einem Kilometer Strecke ergibt sich damit 12 km/h.
(Für die Mathematikintressierten: 1km/(1/12h) =12 km/h)
Klugscheißer (2013-06-25)
Hey Rabenfelder.
Ich habe etwas gebraucht deinen Fehler zu finden. Warum ein Fehler drin ist? Er fährt in der ersten Runde 40 km/h, und soll in der 2. Runde noch viel langsamer fahren um im Durchschnitt auf 60 km/h zu kommen??!
Ich hatte einen ähnlichen Ansatz:

Für 60 km/h im Schnitt muss er die 2 km (2 Runden) auch in 2 Minuten fahren. Frage 1: Wie lange braucht er für die erste Runde? Einfache Formel v=s/t. Somit ist t=s/v. Strecke sind 1 km und v 40km/h, t sind also 0,025h. Auf Minuten umgerechnet sind das 1,5. Damit ergibt sich dass er die 2. Runde in 30 Sekunden fahren muss. 30 Sek = 1/120h, nicht 1/12!! also ist v= 1km/(1h/120)= 120 km/h...

Der Fehler bei dir ist in folgender Zeile:
"t = 1/30 -1/40 = (40-30)/(30*40)=1/12"
(40-30)/(30*40)=10/1200 = 1/120
Name (2013-10-12)
OK,
dafür in ich leider zu blöd
Roland (2014-01-09)
Rundenlänge egal, da die Änderung genau nach halber Zeit erfolgt ...
v(Durchschnitt) = vD =(v1+v2)/2,
gegeben: v1=40, vD=60,
v2=2*vD-v1= 2*60-40 = 80

Stefan (2014-01-20)
@Roland:
2km Strecke mit durchschnittlich 60km/h zu schaffen bedeutet, die Strecke in 2 Minuten zurückzulegen (1 Minute pro Runde).
Nun hat Fritz aber für den ersten Kilometer (die erste Runde) bei 40km/h schon 90 Sekunden gebraucht.
Um die zweite Runde noch in den insgesamt vorgegebenen 2 Minuten zu schaffen, bleiben dahr nur noch 30 Sekunden.
Um 1km in 30 Sekunden zurückzulegen, muss er aber 120km/h schnell fahren.

Deine Rechnung ist falsch, denn die Durchschnittsgeschwindigkeit errechnet sich nicht als Durchschnitt der beiden Geschwindigkeiten.


Beispiel (zum intuitiven Verständnis):
Stell dir vor, eine Schnecke (Geschwindigkeit 1km/h) soll 2km zurücklegen. Dabei muss sie auf dem ersten Kilometer selbst kriechen, und auf dem zweiten Kilometer darf sie mit einem Flugzeug beliebig schnell fliegen.
Wie soll diese Schnecke nun den Weg mit durchschnittlich 60km/h zurücklegen, also in 2 Minuten?
Richtig: Für den ersten Kilometer benötigt sie schon 1 Stunde, d.h. für den zweiten Kilometer bleiben ihr noch -58 Minuten.
Das schafft selbst das schnellste Flugzeug nicht - geschweige denn, dass es nach deiner Argumentation mit 119km/h möglich wäre.

Ist dir jetzt klar, wo der Fehler liegt?
worthier (2014-03-28)
Die einfachste Lösung ist, die Aufgabe zu vereinfachen. Ich will in 2 Stunden mit einer Durchschnittsgeschwindigkeit von 60km/h 120km fahren, fahre aber die erste 60km nur mit 40 km/h. Dafür brauche ich 1,5 Stunden - daher muss ich die verbleibenden 60km in 30 Minuten schaffen. Da liegt die Lösung dann auf der Hand.
Caro (2015-03-12)
Mein Ergebnis lautet ebenfalls 80 km/h und errechnet sich wie folgt:
(x+40):2 = 60 |*2
(x+40) = 120 |-40
x = 80
Caro (2015-03-12)
...tja, und dann sieht man, wenn man für Mathe zu doof ist :-P
Quizzerin (2015-05-14)
...alsoichb spiele ein Quiz mit dieser Frage und weder 20,30, 80 oder 120 km/h sind richtig.
Was soll ich denn jetzt noch machen?
pups (2015-07-05)
Man kann auch leicht überprüfen, dass 80km/h falsch ist. 80km/h ist doppelt so schnell wie 40 km/h, deshalb braucht er für die Runde die halbe Zeit. Also ist er 2/3 der Zeit 40km/h gefahren und 1/3 der Zeit 80 km/h.
(2/3)*40+(1/3)*80 = 53,33
(3/4)*40+(1/4)*120= 60
Etienne D. Meinecke (2015-08-07)
So wie oben gestellt, ist es eine einfache Drei-Satz Rechnung !

Hier nochmal die Frage:
---------------------------
Die Runde einer Rennstrecke ist 1 km lang. Mit dem Auto soll Fritz in zwei Runden eine Durchschnittsgeschwindigkeit von 60 km/h erreichen.
In der ersten Runde hat er aber nur durchschnittlich 40 km/h geschafft.
Wie schnell muss Fritz in der zweiten Runde fahren, um noch auf insgesamt 60 km/h zu kommen?

Jetzt in zwei Schritte zu einer besseren - interessanteren Frage:
----------------------------------------------------------------------
1. (30 statt 40 km/h):
Die Runde einer Rennstrecke ist 1 km lang. Mit dem Auto soll Fritz in zwei Runden eine Durchschnittsgeschwindigkeit von 60 km/h erreichen.
In der ersten Runde hat er aber nur durchschnittlich 30 km/h geschafft.
Wie schnell muss Fritz in der zweiten Runde fahren, um noch auf insgesamt 60 km/h zu kommen?

2. Interessanter (abstrakter - ohne Vorgabe der Länge des Rennkurses):
Eine Rennstrecke soll in zwei Runden mit einer Durchschnittsgeschwindigkeit von 60 km/h durchfahren werden.
In der ersten Runde schafft der Fahrer aber nur durchschnittlich 30 km/h.
Wie schnell muss er in der zweiten Runde fahren, um noch auf insgesamt 60 km/h zu kommen?

Lösung:
-----------------------------------------------
Geht nicht mal mit Lichtgeschwindigkeit
An anderer Stelle im WEB wird dies mit einer mathematischen Formel unter Beweis gestellt. Jeder kann es sich aber selbst zusammenreimen, wenn er den Dingen Werte gibt. Am einfachsten in diesem Fall wäre es. den Rundkurs mit 60 km Länge anzunehmen. Dann kann man es sich ausrechnen!

Wie lange bräuchte er für die zwei Runden, wenn er es mit 60 km/h Durchschnittsgeschwindigkeit schafft?

Antwort: 2 Stunden !

Wie lange braucht er bei 30 km/h Durchschnittsgeschwindigkeit für für die erste der zwei Runden (= 60 km bei 30km/h)?

Antwort: 2 Stunden !
Er hat also alle Zeit bereits in der ersten Runde vertrödelt und in 0,00 verbleibenden Sekunden kann niemand 60 km zurücklegen.

Allein logisch kann man ohne Rechnen darauf kommen, denn wenn die zu leistende Durchschnittsgeschwindigkeit nur die Hälfte beträgt, ist schon klar, dass man bei zwei Runden keine Zeit mehr hat!

Anmerkung: Wenn ihr das Rätsel jemanden stellt, lasst den armen Rennfahrer nicht so bescheidene 60 km/h abfordern. Erhöht auf 200 km/h, er schafft nur 100, weil er sich in der ersten Runde die Strecke erst mal ansehen will. Und er braucht auch keinen Namen.
Besonders nicht Fritz. Der arme Fritz muss fast überall (bes. in Witzen) seinen Kopf hinhalten.
Annika (2016-06-12)
Coole Rätsel bin nicht sofort auf 120 km/h gekommen, aber wenn man ein bisschen nachdenkt kommt man schon drauf. ;D
lumacagabi (2018-02-23)
Eine halbe Minute für den einen Kilometer hat er noch. Das sind 30 sec; 1km/30sec; das heißt: ausgedrückt in km/h: Eine Stunde hat 3600 sec und 30 sec sind dann 3600/30 = 120km/h
Trittbrettfahrer (2018-07-01)
Wie kommt ihr auf 2 Minuten?
Auch wenn der Fahrer 60 Minuten für den ersten Kilometer braucht, kann er mit 140 km/h die 2. Runde durchbrettern und hat so eine durchschnittsgeschwindigkeit für die komplette Länge der Strecke von 70,5 km/h.

Die Antwort auf die Frage ist (es gibt keine lineare Beschränkung hier! Es gibt kein Zeitfenster)

60 = (40+x) / 2 . ---> x = 80
T.Rex (2019-07-21)
Trittbrettfahrer (2018-07-01)
Wie kommt ihr auf 2 Minuten?

2 Runden a 1 km mit einer Durchschnittsgeschwindigkeit von 60 km/h
t=s/v
t=2km/60 km/h
t=2/60 Stunden oder 2 minuten
Mr. Lösung (2021-03-19)
2 Runden = 2 km
bei 60 km/h bräuchte man für beide Runden die Zeit: 2/60 h = 1/30 h
für die erste Runde braucht Fritz aber schon: 1/40 h

Somit darf Fritz für die zweite Runde nur noch
1/30 h - 1/40 h = 1/120 h benötigen.

Fritz muss in der zweiten Runde also 120 km/h fahren!
(und nicht 80 km/h wie oft vermutet...)
Mathegym (2023-04-10)
120 km/h (hier schon häufiger genannt) ist richtig. Begründung:
Für den ersten km benötigt er 1/40 h
Für den zweiten km benötigt er 1/120 h
Für 2km benötigt er damit insgesamt 1/40+1/120=4/120=1/30 (h).
Als Durchschnittsgeschwindigkeit ergibt sich damit:
2km/(1/30 h)=60 km/h
Dunkeltaps (2023-04-14)
Ich habe mir lange den Kopf zerbrochen, um mir überhaupt erst einmal die Aufgabe bildlich vorzustellen. Mit den Zeiten pro Runde auf irgendwelche Geschwindigkeiten zu kommen, tue ich mich schwer...

Rechnet man mal prinzipiell mit nur 30 km/h Durchschnittsgeschwindigkeit, dann wären das 2 Minuten pro Runde, weil 60 Minuten durch 30 = 2 Minuten. Bei zwei Runden = 4 Minuten, aber hier fängt der Hamster an zu humpeln... Fährt das Auto nämlich die 2. Runde mit doppelter Geschwindigkeit, also 60 km/h, dann braucht man für beide Runden 3 Minuten. 60 : 3 = 20 * 2 km = 40 km/h. Die Durchschnittsgeschwindigkeit ist also nicht (V1 + V2) / 2 (oder (30 + 60) / 2 = 45), sondern sie ist kleiner.
Doppelte Geschwindigkeit = halbe Zeit, also 120 km = 30 Sekunden für Runde 2. Damit ergibt sich für beide Runden 2,50 Minuten ==> 60 : 2,5 = 24 * 2 km = 48 km/h
120 km/h für die 2. Runde ist also falsch.
Bei 240 km/h benötigt das Auto für Runde 2 nur noch 15 Sekunden, also 0,25 Minuten
Wieder Zeit Runde 1 + Zeit Runde 2 = 2,25 Minuten
60 : 2,25 = 26,67 * 2 Km = 53,33 km/h Durchschnittsgeschwindigkeit. Die 60 km/h als Durchschnitt wird man also nicht erreichen.

Den Test erklärt Magda: https://www.youtube.com/watch?v=oW_9erHuyqQ
Ich (2023-05-02)
Habe keine Ahnug aber ich sage 3098 Kartoffeln.
Basti (2023-07-17)
@Dunkeltaps: Aber du kannst doch nicht einfach die Durchschnittsgeschwindigkeit der ersten Runde von 40 auf 30 herabsetzen und damit weiterrechnen. Damit verfälscht du doch komplett das Rätsel und Ergebnis.

Da hast du bereits den Fehler, weswegen dein Ergebnis nicht stimmen kann.
David (2024-02-09)
Wenn ich 60 km/h fahre, dann sind das 60 km in 1 Stunde, also 60 km in 60 Minuten, also 1 km in 1 Minute.
Bei zwei Runden, je 1 km, wären das 2 km in 2 Minuten. Fritz darf also nur genau 2 Minuten brauchen, egal wie schnell oder langsam er zwischendurch mal war.

Das Auto ist in der 1. Runde leider nur 40 km/h gefahren. Das bedeutet, dass Fritz 1 Minute und 30 Sekunden für die 1. Runde gebraucht hat. Um das zu errechnen, muss man nur 1 km : 40 km/h (Distanz : Geschwindigkeit) = 0,025 h rechnen. Dann 0,025 h * 60, um es in Minuten zu haben. Das sind 1,5 Minuten, also 1 Minute und 30 Sekunden.

Um nun den Rest der Strecke in 30 Sekunden zu schaffen (damit er insgesamt 2 Minuten braucht), muss er also doppelt so schnell fahren. Bei 60 km/h war es 1 Minute und bei 120 km/h sind es dann die 30 Sekunden.

Also muss Fritz 120 km/h in der 2. Runde fahren.
Gerd, der Orthodoxe (2024-08-23)
... empfiehlt die orthodoxe Methode!
Zunächst einmal ermitteln, wie viele Sekunden Fritz für die erste Runde benötigt hat.
Eine Geschwindigkeit von 40 Km/h bedeutet, daß in 3600 Sekunden (60 Minuten zu
je 60 Sekunden) 40 000 Meter zurückgelegt werden. Das sind 40 000/3600 =
11.111 (per.) Meter pro Sekunde. Die Distanz von 1000 Metern dividiert man durch
11.111 und erhält 90 Sekunden. Die hat Fritz für die erste Runde benötigt.

Um die Durchschnittsgeschwindigkeit von 60 Km/h zu halten, verbleiben ihm für die zweite Runde also nur 30 Sekunden!
Die Formel V=S/T (Geschwindigkeit=Weg durch Zeit) läßt sich nicht verbiegen.
Wie berechnet man die Geschwindigkeit, die Fritz in der zweiten Runde haben müßte, um auf eine Durchschnittsgeschwindigkeit von 60 Km/h zu kommen?
Man dividiert die Strecke von 1000 Metern durch 30 (Sekunden) und erhält:
1000/30= 33.333 (per.) Meter pro Sekunde. Um Meter pro Sekunde in Kilometer pro Stunde umzurechnen, muß man mit 3600 multiplizieren (60 Minuten * 60 Sekunden) und erhält:
120 Km/h.
David und alle Vorredner, die zu diesem Ergebnis gekommen sind, hatten also recht.
Die Übrigen: Nicht verzagen! ... und Üben hilft doch!
Christian (2024-11-01)
Ich bin auch voll reingefallen und auf 80 km/h gekommen. :-)

1 min mit 40 km/h + 1 min mit 80 km/h fahren und schon hat man die 2 km in 2 Minuten geschafft. Wäre dich einfach.

Was ich aber überlesen habe:
"In der ersten !!! Runde !!! hat er aber nur durchschnittlich 40 km/h geschafft."

Fritz hat also nicht nach der halben Zeit einfach beschleunigt und gut wäre es gewesen.

Nö, Fritz ist die halbe Strecke mit 40 km/h durchgefahren. Jetzt hat von den 2 Minuten nur noch 30 Sekunden übrig aber noch 1 km zu fahren. Das geht tatsächlich nur mit 120 km/h.
Christian (2024-11-03)
Ich bin auch voll reingefallen und auf 80 km/h gekommen. :-)

1 min mit 40 km/h + 1 min mit 80 km/h fahren und schon hat man die 2 km in 2 Minuten geschafft. Wäre dich einfach.

Was ich aber überlesen habe:
"In der ersten !!! Runde !!! hat er aber nur durchschnittlich 40 km/h geschafft."

Fritz hat also nicht nach der halben Zeit einfach beschleunigt und gut wäre es gewesen.

Nö, Fritz ist die halbe Strecke mit 40 km/h durchgefahren. Jetzt hat von den 2 Minuten nur noch 30 Sekunden übrig aber noch 1 km zu fahren. Das geht tatsächlich nur mit 120 km/h.

 

Neuen Kommentar schreiben: